Since, argz2z1=2π ⇒z2z1=cos2π+isin2π=i ∴z2nz1n=(i)n⇒in=1 [∵∣z2∣=∣z1∣=1] ⇒n=4k
Alternate Solution
Since, argz1z2=2π ∴z1z2=∣∣z1z2∣∣ei2π ⇒z1z2=i [∵∣z1∣=∣z2∣=1] ⇒(z1z2)n=in ∴z1 and z2 are nth roots of unity. z1n=z2n=1⇒(z1z2)n=1⇒in=1 ⇒n=4k, where k is an integer.