Q.
Let z1=2+3i and z2=3+4i be two points on the complex plane. Then the set of complex numbers z satisfying ∣z−z1∣2+∣z−z2∣2=∣z1−z2∣2 represents
3182
195
WBJEEWBJEE 2013Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, z1=2+3i and z2=3+4i
Now, we have ∣z−z1∣2+∣z−z2∣2=∣z1−z2∣2 (let z=x+iy) ⇒∣(x+iy)−(2+3i)∣2+∣(x+iy)−(3+4i)∣2 =∣(2+3i)−(3+4i)∣2 ⇒∣(x−2)+i(y−3)∣2+∣(x−3)+i(y−4)∣2 =∣−1−i∣2 ⇒(x−2)2+(y−3)2+(x−3)2+(y−4)2=1+1 ⇒x2+4−4x+y2+9−6y +x2+9−6x+y2+16−8y=2 ⇒2x2+2y2−10x−14y+36=0 ⇒x2+y2−5x−7y+18=0
which represent a circle with centre (2,527) and
radius 425+449−18=21