Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution of the differential equation, x y'-y=x2(x cos x+ sin x), x>0 If y (π)=π, then y''((π/2))+ y ((π/2)) is equal to :
Q. Let
y
=
y
(
x
)
be the solution of the differential equation,
x
y
′
−
y
=
x
2
(
x
cos
x
+
sin
x
)
,
x
>
0
If
y
(
π
)
=
π
,
then
y
′′
(
2
π
)
+
y
(
2
π
)
is equal to :
1824
205
JEE Main
JEE Main 2020
Differential Equations
Report Error
A
2
+
2
π
B
1
+
2
π
C
1
+
2
π
+
4
π
2
D
2
+
2
π
+
4
π
2
Solution:
x
d
x
d
y
−
y
=
x
2
(
x
cos
x
+
sin
x
)
,
x
>
0
d
x
d
y
−
x
y
=
x
(
x
cos
x
+
sin
x
)
⇒
d
x
d
y
+
P
y
=
Q
so,
I
.
F
.
=
e
∫
−
x
1
d
x
=
∣
x
∣
1
=
x
1
(
x
>
0
)
Thus,
x
y
=
∫
x
1
(
x
(
x
cos
x
+
sin
x
))
d
x
⇒
x
y
=
x
sin
x
+
C
∵
y
(
π
)
=
π
⇒
C
=
1
so,
y
=
x
2
sin
x
+
x
⇒
(
y
)
π
/2
=
4
π
2
+
2
π
Also,
d
x
d
y
=
x
2
cos
x
+
2
x
sin
x
+
1
⇒
d
x
2
d
2
y
=
−
x
2
sin
x
+
4
x
cos
x
+
2
sin
x
⇒
d
x
2
d
2
y
∣
∣
2
π
=
−
4
π
2
+
2
Thus,
y
(
2
π
)
+
d
x
2
(
2
π
)
d
2
y
=
2
π
+
2