Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution of the differential equation x log e x (d y/d x)+y=x2 log e x,(x >1). If y(2)=2, then y(e) is equal to
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
x
lo
g
e
x
d
x
d
y
+
y
=
x
2
lo
g
e
x
,
(
x
>
1
)
. If
y
(
2
)
=
2
, then
y
(
e
)
is equal to
7
1
JEE Main
JEE Main 2023
Differential Equations
Report Error
A
4
4
+
e
2
52%
B
4
1
+
e
2
23%
C
2
2
+
e
2
9%
D
2
1
+
e
2
16%
Solution:
x
lo
g
e
x
d
x
d
y
+
y
=
x
2
lo
g
e
x
,
(
x
>
1
)
⇒
d
x
d
y
+
x
l
n
x
y
=
x
Linear differential equation
I.F.
=
e
∫
x
l
n
x
1
d
x
=
∣
ln
x
∣
∴
Solution of differential equation
y
∣
ln
x
∣
=
∫
x
∣
ln
x
∣
d
x
=
∣
ln
x
∣
2
x
2
−
∫
x
1
⋅
2
x
2
d
x
⇒
y
∣
ln
x
∣
=
∣
ln
x
∣
(
2
x
2
)
−
4
x
2
+
c
For constant
y
(
2
)
=
2
⇒
c
=
1
So,
y
(
x
)
=
2
x
2
−
4∣
l
n
x
∣
x
2
+
∣
l
n
x
∣
1
Hence,
y
(
e
)
=
2
e
2
−
4
e
2
+
1
=
1
+
4
e
2