Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y = y ( x ) be the solution of the differential equation x d y-y d x=√(x2-y2) d x, x ≥ 1, with y(1)=0 . If the area bounded by the line x=1, x=eπ, y=0 and y=y(x) is α e2 π+β then the value of 10(α+β) is equal to .
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
x
d
y
−
y
d
x
=
(
x
2
−
y
2
)
d
x
,
x
≥
1
, with
y
(
1
)
=
0.
If the area bounded by the line
x
=
1
,
x
=
e
π
,
y
=
0
and
y
=
y
(
x
)
is
α
e
2
π
+
β
then the value of
10
(
α
+
β
)
is equal to ______.
2421
195
JEE Main
JEE Main 2021
Differential Equations
Report Error
Answer:
4
Solution:
x
d
y
−
y
d
x
=
x
2
−
y
2
d
x
⇒
x
2
x
d
y
−
y
d
x
=
x
1
1
−
x
2
y
2
d
x
⇒
∫
1
−
(
x
y
)
2
d
(
x
y
)
=
∫
x
d
x
⇒
sin
−
1
(
x
y
)
=
ln
∣
x
∣
+
c
at
x
=
1
,
y
=
0
⇒
c
=
0
y
=
x
sin
(
ℓ
n
x
)
A
=
1
∫
e
π
x
sin
(
ℓ
n
x
)
d
x
x
=
e
t
,
d
x
=
e
t
d
t
⇒
0
∫
π
e
2
t
sin
(
t
)
d
t
=
A
α
e
2
π
+
β
=
(
5
e
2
t
(
2
sin
t
−
cos
t
)
)
0
π
=
5
1
+
e
2
π
α
=
5
1
,
β
=
5
1
so
10
(
α
+
β
)
=
4