Q.
Let y=y(x) be the solution of the differential equation ((x+2)e(x+2y+1)+(y+1))dx=(x+2)dy,y(1)=1. If the domain of y=y(x) is an open interval (α,β), then ∣α+β∣ is equal to _______.
y+1=Y⇒dy=dY x+2=X⇒dx=dX ⇒(XeXY+Y)dX=XdY ⇒XdY−YdX=XeY/xdX ⇒d(XY)e−xY=XdX −e−Y/x=l∣X∣+c (3,2)→−e−32=l∣3∣+c −e−xY=ln∣X∣−e−32−ln3 e−xY=e2/3+ln3−ln∣X∣>0 ln∣X∣<(e2/3+ln3)
Let λ=(e2/3+ln3) ∣x+2∣<eλ −eλ<x+2<eλ −eλ−2<x<eλ−2 α+β=−4⇒∣α+β∣=4
Although x=−2 should be excluded from domain but according to the given problem it will the most appropriate solution.