Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution of the differential equation (x2-3 y2) d x+3 x y d y=0, y(1)=1. Then 6 y2( e ) is equal to
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
(
x
2
−
3
y
2
)
d
x
+
3
x
y
d
y
=
0
,
y
(
1
)
=
1
. Then
6
y
2
(
e
)
is equal to
147
127
JEE Main
JEE Main 2023
Differential Equations
Report Error
A
e
2
50%
B
2
3
e
2
0%
C
3
e
2
0%
D
2
e
2
50%
Solution:
(
x
2
−
3
y
2
)
d
x
+
3
x
y
d
y
=
0
d
x
d
y
=
3
x
y
3
y
2
−
x
2
⇒
d
x
d
y
=
x
y
−
3
1
y
x
.....
(
1
)
Put
y
=
vx
d
x
d
y
=
v
+
x
d
x
d
v
(1)
⇒
v
+
x
d
x
d
v
=
v
−
3
1
v
1
⇒
v
d
v
=
3
x
−
1
Integrating both side
2
v
2
=
3
−
1
ln
x
+
c
⇒
2
x
2
y
2
=
3
−
1
ln
x
+
c
y
(
1
)
=
1
⇒
2
1
=
c
⇒
2
x
2
y
2
=
3
−
1
ln
x
+
2
1
⇒
y
2
=
−
3
2
x
2
ln
x
+
x
2
y
2
(
e
)
=
−
3
2
e
2
+
e
2
=
3
e
2
⇒
6
y
2
(
e
)
=
2
e
2