Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y = y ( x ) be the solution of the differential equation (x+1) y prime-y=e3 x(x+1)2, with y(0)=(1/3). Then, the point x=-(4/3) for the curve y = y ( x ) is:
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
(
x
+
1
)
y
′
−
y
=
e
3
x
(
x
+
1
)
2
, with
y
(
0
)
=
3
1
. Then, the point
x
=
−
3
4
for the curve
y
=
y
(
x
)
is:
961
155
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
not a critical point
0%
B
a point of local minima
0%
C
a point of local maxima
100%
D
a point of inflection
0%
Solution:
(
x
+
1
)
d
y
−
y
d
x
=
e
3
x
(
x
+
1
)
2
(
x
+
1
)
2
(
x
+
1
)
d
y
−
y
d
x
=
e
3
x
d
(
x
+
1
y
)
=
e
3
x
⇒
x
+
1
y
=
3
e
3
x
+
C
(
0
,
3
1
)
⇒
C
=
0
⇒
y
=
3
(
x
+
1
)
e
3
x
d
x
d
y
=
3
1
(
(
x
+
1
)
3
e
3
x
+
e
3
x
)
=
3
3
3
x
(
3
x
+
4
)
Clearly,
x
=
3
−
4
is point of local minima