Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y = y(x) be the solution of the differential equation sin x (dy/dx) + y cos x = 4x , x ∈ ( 0 , π ) .if y ( (π/2) ) = 0 , then y ((π/6)) is equal to :
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
sin
x
d
x
d
y
+
y
cos
x
=
4
x
,
x
∈
(
0
,
π
)
.if
y
(
2
π
)
=
0
, then
y
(
6
π
)
is equal to :
2545
197
JEE Main
JEE Main 2018
Differential Equations
Report Error
A
9
3
4
π
2
17%
B
9
3
−
8
π
2
15%
C
−
9
8
π
2
55%
D
−
9
3
4
π
2
13%
Solution:
sin
x
d
x
d
y
+
y
cos
x
=
4
x
,
x
∈
(
0
,
π
)
d
x
d
y
+
y
cot
x
=
s
i
n
x
4
x
∴
I.F.
=
e
∫
c
o
t
x
d
x
=
sin
x
∴
Solution is given by
y
sin
x
=
∫
s
i
n
x
4
x
⋅
sin
x
d
x
y
⋅
sin
x
=
2
x
2
+
c
when
x
=
2
π
,
y
=
0
⇒
c
=
−
2
π
2
∴
Equation is :
y
sin
x
=
2
x
2
−
2
π
2
when
x
=
6
π
then
y
⋅
2
1
=
2
⋅
36
π
2
−
2
π
2
∴
y
=
−
9
8
π
2