Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution of the differential equation (d y/d x)=(4 y3+2 y x2/3 x y2+x3), y(1)=1. If for some n ∈ N , y (2) ∈[ n -1, n ), then n is equal to
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
d
x
d
y
=
3
x
y
2
+
x
3
4
y
3
+
2
y
x
2
,
y
(
1
)
=
1
. If for some
n
∈
N
,
y
(
2
)
∈
[
n
−
1
,
n
)
, then
n
is equal to ______
427
146
JEE Main
JEE Main 2022
Differential Equations
Report Error
Answer:
3
Solution:
d
x
d
y
=
3
x
y
2
+
x
3
4
y
3
+
2
y
x
2
,
y
(
1
)
=
1
d
x
d
y
=
3
(
y
/
x
)
2
+
1
4
(
y
/
x
)
3
+
2
(
y
/
x
)
y
=
x
p
x
d
x
d
p
+
p
=
3
p
2
+
1
4
p
3
+
2
p
x
d
x
d
p
=
3
p
2
+
1
p
3
+
p
∫
p
3
+
p
3
p
2
+
1
d
p
=
∫
x
d
x
ln
(
p
3
+
p
)
=
ln
x
+
ln
C
p
3
+
p
=
x
C
(
x
y
)
3
+
(
x
y
)
=
x
C
y
3
+
x
2
y
=
x
4
C
x
=
1
,
y
=
1
1
+
1
=
C
⇒
C
=
2
y
3
+
x
2
y
=
2
x
4
Put
x
=
2
y
3
+
4
y
−
32
=
0
Having root between
2
and
3
y
(
2
)
∈
[
2
,
3
)