Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution of the differential equation cos x (d y/d x)+2 y sin x= sin 2 x x ∈(0, (π/2)) . If y (π / 3)=0, then y (π / 4) is equal to:
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
cos
x
d
x
d
y
+
2
y
sin
x
=
sin
2
x
x
∈
(
0
,
2
π
)
.
If
y
(
π
/3
)
=
0
,
then
y
(
π
/4
)
is equal to:
5053
215
JEE Main
JEE Main 2020
Differential Equations
Report Error
A
2
−
2
26%
B
2
1
−
1
32%
C
2
−
2
29%
D
2
+
2
12%
Solution:
cos
x
d
x
d
y
+
2
y
sin
x
=
sin
2
x
d
x
d
y
+
c
o
s
x
2
s
i
n
x
y
=
2
sin
x
I.F.
=
e
∫
2
c
o
s
x
s
i
n
x
d
x
=
e
2
l
n
s
e
c
x
=
sec
2
x
y
⋅
sec
2
x
=
∫
2
sin
x
⋅
sec
2
x
d
x
y
sec
2
x
=
2
∫
tan
x
sec
x
d
x
y
sec
2
x
=
2
sec
x
+
c
At
x
=
3
π
,
y
=
0
⇒
0
=
2
sec
3
π
+
C
⇒
C
=
−
4
y
sec
2
x
=
2
sec
x
−
4
Put
x
=
4
π
y
⋅
2
=
2
2
−
4
y
=
2
−
2