Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y = y(x) be the solution curve of the differential equation, (y2-x) (dy/dx)=1, satisfying y(0) = 1. This curve intersects the x-axis at a point whose abscissa is :
Q. Let
y
=
y
(
x
)
be the solution curve of the differential equation,
(
y
2
−
x
)
d
x
d
y
=
1
,
satisfying
y
(
0
)
=
1
. This curve intersects the x-axis at a point whose abscissa is :
2278
189
JEE Main
JEE Main 2020
Differential Equations
Report Error
A
2
+
e
B
2
C
2
−
e
D
−
e
Solution:
(
y
2
−
x
)
d
x
d
y
=
1
⇒
d
y
d
x
+
x
=
y
2
I
.
F
.
=
e
∫
d
y
=
e
y
Solution is given by
x
e
y
=
(
y
2
−
2
y
+
2
)
e
y
+
C
x
=
0
,
y
=
1
, gives
C
=
−
e
If
y
=
0
, then
x
=
2
−
e