Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution curve of the differential equation (d y/d x)+(1/x2-1) y=((x-1/x+1))(1/2), x>1 passing through the point (2, √(1/3)). Then √7 y (8) is equal to
Q. Let
y
=
y
(
x
)
be the solution curve of the differential equation
d
x
d
y
+
x
2
−
1
1
y
=
(
x
+
1
x
−
1
)
2
1
,
x
>
1
passing through the point
(
2
,
3
1
)
. Then
7
y
(
8
)
is equal to
1435
0
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
11
+
6
lo
g
e
3
B
19
C
12
−
2
lo
g
e
3
D
19
−
6
lo
g
e
3
Solution:
d
x
d
y
+
x
2
−
1
1
y
=
(
x
+
1
x
−
1
)
2
1
d
x
d
y
+
P
y
=
Q
I.F.
=
e
∫
P
d
x
=
(
x
+
1
x
−
1
)
2
1
y
(
x
+
1
x
−
1
)
2
1
=
∫
(
x
+
1
x
−
1
)
1
d
x
=
x
−
2
lo
g
e
∣
x
+
1∣
+
C
Curve passes through
(
2
,
3
1
)
⇒
C
=
2
lo
g
e
3
−
3
5
at
x
=
8
,
7
y
(
8
)
=
19
−
6
lo
g
e
3