Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution curve of the differential equation (d y/d x)=(y/x)(1+x y2(1+ log e x)), x>0, y(1)=3. Then (y2(x)/9) is equal to :
Q. Let
y
=
y
(
x
)
be the solution curve of the differential equation
d
x
d
y
=
x
y
(
1
+
x
y
2
(
1
+
lo
g
e
x
)
)
,
x
>
0
,
y
(
1
)
=
3
. Then
9
y
2
(
x
)
is equal to :
3565
121
JEE Main
JEE Main 2023
Differential Equations
Report Error
A
5
−
2
x
3
(
2
+
l
o
g
e
x
3
)
x
2
B
3
x
3
(
1
+
l
o
g
e
x
2
)
−
2
x
2
C
7
−
3
x
3
(
2
+
l
o
g
e
x
2
)
x
2
D
2
x
3
(
2
+
l
o
g
e
x
3
)
−
3
x
2
Solution:
d
x
d
y
−
x
y
=
y
3
(
1
+
lo
g
e
x
)
y
3
1
d
x
d
y
−
x
y
2
1
=
1
+
lo
g
e
x
Let
−
y
2
1
=
t
⇒
y
3
2
d
x
d
y
=
d
x
d
t
∴
d
x
d
t
+
x
2
t
=
2
(
1
+
lo
g
e
x
)
I.F.
=
e
∫
x
2
d
x
=
x
2
y
2
−
x
2
=
3
2
(
(
1
+
lo
g
e
x
)
x
3
−
3
x
3
)
+
C
y
(
1
)
=
3
9
y
2
=
5
−
2
x
3
(
2
+
l
o
g
e
x
3
)
x
2
OR
x
d
y
=
y
d
x
+
x
3
(
1
+
lo
g
e
x
)
d
x
y
3
x
d
y
−
y
d
x
=
x
(
1
+
lo
g
e
x
)
d
x
−
y
x
d
(
y
x
)
=
x
2
(
1
+
lo
g
e
x
)
d
x
−
(
y
x
)
2
=
2
∫
x
2
(
1
+
lo
g
e
x
)
d
x