Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution curve of the differential equation sin (2 x2) log e( tan x2) d y+(4 x y-4 √2 x sin (x2-(π/4))) d x=0, 0<x<√(π/2), which passes through the point (√(π/6), 1). Then |y(√(π/3))| is equal to
Q. Let
y
=
y
(
x
)
be the solution curve of the differential equation
sin
(
2
x
2
)
lo
g
e
(
tan
x
2
)
d
y
+
(
4
x
y
−
4
2
x
sin
(
x
2
−
4
π
)
)
d
x
=
0
,
0
<
x
<
2
π
, which passes through the point
(
6
π
,
1
)
. Then
∣
∣
y
(
3
π
)
∣
∣
is equal to_______
2263
0
JEE Main
JEE Main 2022
Differential Equations
Report Error
Answer:
1
Solution:
sin
(
2
x
2
)
ln
(
tan
x
2
)
d
y
+
(
4
x
y
−
4
2
x
sin
(
x
2
−
4
π
)
)
d
x
=
0
ln
(
tan
x
2
)
d
y
+
s
i
n
(
2
x
2
)
4
x
y
d
x
−
s
i
n
(
2
x
2
)
4
2
x
s
i
n
(
x
2
−
4
π
)
d
x
=
0
d
(
y
⋅
ln
(
tan
x
2
)
)
−
4
2
x
2
−
2
s
i
n
x
2
c
o
s
x
2
(
s
i
n
x
2
−
c
o
s
x
2
)
d
x
=
0
d
(
y
ln
(
tan
x
2
)
)
−
(
s
i
n
x
2
+
c
o
s
2
)
−
1
4
x
(
s
i
n
x
2
−
c
o
s
x
2
)
d
x
=
0
⇒
∫
d
(
y
ln
(
tan
x
2
)
)
+
2
∫
t
2
−
1
d
t
=
∫
0
⇒
y
ln
(
tan
x
2
)
+
2
⋅
2
1
ln
∣
∣
t
+
1
t
−
1
∣
∣
=
c
y
ln
(
tan
x
2
)
+
ln
(
s
i
n
x
2
+
c
o
s
x
2
+
1
s
i
n
x
2
+
c
o
s
x
2
−
1
)
=
c
Put
y
=
1
and
x
=
6
π
1
ln
(
3
1
)
+
ln
(
2
1
+
2
3
+
1
)
(
2
1
+
2
3
−
1
)
=
c
Now
x
=
3
π
⇒
y
(
ln
3
)
+
ln
(
2
1
+
2
3
+
1
)
(
2
1
+
2
3
−
1
)
=
ln
(
3
1
)
+
ln
(
3
+
3
3
−
1
)
y
(
ln
3
)
=
ln
(
3
1
)
⇒
y
=
−
1
∣
y
∣
=
1