Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y(x) be the solution of the differential equation 2 x2 d y+(ey-2 x) d x=0, x>0 . If y(e)=1, then y (1) is equal to:
Q. Let
y
(
x
)
be the solution of the differential equation
2
x
2
d
y
+
(
e
y
−
2
x
)
d
x
=
0
,
x
>
0.
If
y
(
e
)
=
1
, then
y
(
1
)
is equal to:
2019
233
JEE Main
JEE Main 2021
Differential Equations
Report Error
A
0
B
2
C
lo
g
e
2
D
lo
g
e
(
2
e
)
Solution:
2
x
2
d
y
+
(
e
y
−
2
x
)
d
x
=
0
d
x
d
y
+
2
x
2
e
y
−
2
x
=
0
⇒
d
x
d
y
+
2
x
2
e
y
−
x
1
=
0
e
−
y
d
x
d
y
−
x
e
−
y
=
−
2
x
2
1
⇒
Put
e
−
y
=
z
d
x
−
d
z
−
x
z
=
−
2
x
2
1
⇒
x
d
z
+
z
d
x
=
2
x
d
x
d
(
x
z
)
=
2
x
d
x
⇒
x
z
=
2
1
lo
g
e
x
+
c
x
e
−
y
=
2
1
lo
g
e
x
+
c
,
passes through
(
e
,
1
)
⇒
C
=
2
1
x
e
−
y
=
2
l
o
g
e
e
x
e
−
y
=
2
1
⇒
y
=
lo
g
e
2