(1+ex)y′+yex=1 ⇒d((1+ex)y)=1 ⇒y(1+ex)=x+C ∵y(0)=2 ∴2×2=C⇒C=4 ∴y(1+ex)=x+4 ∴y(−4)=0,y(−2)=1+e−22=0
For critical point y′ = 0 ⇒yex=1
Now let g(x)=yex−1=1+exex(x+4)−1 g(−1)=1+e−13e−1−1=e+13−1<0 g(0)=2−1>0
So there exists one value of x in (−1,0) for which g(x)=0⇒y′=0 ⇒ there exist a critical point of y(x) in (−1,0)