Given, y=ln(1+cos(x))2
Differentiating the above equation with respect to x we get, dxdy=dxd{ln(1+cos(x))2}
By using differentiation of composite functions we get, dxdy=(1+cos(x)21dxd(1+cos(x))2 ∵dtd{lnt}=t1 dxdy=(1+cosx)2dx2(1+cosx)d(cosx) dxdy=(1+cosx)−2sinx
Differentiating the above equation with respect to x, dxd{dxdy}=dxd{(1+cosx)−2sinx}
By using the quotient rule of differentiation we get, dx2d2y=−2[(1+cos(x)2(1+cosx)dxd(sin(x))−sin(x)dxd(1+cos(x))] dx2d2y=−2[(1+cos(x))2(1+cos(x))cos(x)−sin(x)(−sin(x))] dx2d2y=−2[(1+cos(x))2cos(x)+cos2(x)+sin2(x)]
As we know, cos2(θ)+sin2(θ)=1. ∴dx2d2y=(1+cos(x))2−2(1+cos(x)) or dx2d2y=(1+cos(x))−2
Now we have to find the value of dx2d2y+e2y2.
Let us find the value of e2ν. e2y=e{2ln(1+cos(x))2} e2y=e{22ln(1+cos(x))}{∵ln(a)b=bln(a)} e2y=eln(1+cos(x)) e2y=1+cos(x){∵aloga(b)=b} ∴dx2d2y+e212=1+cos(x)−2+1+cos(x)2 dx2d2y+e2y2=0