Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=ln(1 + cos x)2 , then the value of (d2 y/d x2)+(2/ey / 2) is equal to:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $y=ln\left(1 + cos x\right)^{2}$ , then the value of $\frac{d^{2} y}{d x^{2}}+\frac{2}{e^{y / 2}}$ is equal to:
NTA Abhyas
NTA Abhyas 2022
A
B
C
D
Solution:
Given,
$y=\ln (1+\cos (x))^{2}$
Differentiating the above equation with respect to $x$ we get,
$\frac{d y}{d x}=\frac{d}{d x}\left\{\ln (1+\cos (x))^{2}\right\}$
By using differentiation of composite functions we get,
$\frac{d y}{d x}=\frac{1}{\left(1+\cos (x)^{2}\right.} \frac{d}{d x}(1+\cos (x))^{2} $
$\because \frac{d}{d t}\{\ln t\}=\frac{1}{t} $
$\frac{d y}{d x}=\frac{2(1+\cos x) d}{(1+\cos x)^{2} d x}(\cos x) $
$\frac{d y}{d x}=\frac{-2 \sin x}{(1+\cos x)}$
Differentiating the above equation with respect to $x$,
$\frac{d}{d x}\left\{\frac{d y}{d x}\right\}=\frac{d}{d x}\left\{\frac{-2 \sin x}{(1+\cos x)}\right\}$
By using the quotient rule of differentiation we get,
$\frac{d^{2} y}{d x^{2}}=-2\left[\frac{(1+\cos x) \frac{d}{d x}(\sin (x))-\sin (x) \frac{d}{d x}(1+\cos (x))}{\left(1+\cos (x)^{2}\right.}\right] $
$\frac{d^{2} y}{d x^{2}}=-2\left[\frac{(1+\cos (x)) \cos (x)-\sin (x)(-\sin (x))}{(1+\cos (x))^{2}}\right] $
$\frac{d^{2} y}{d x^{2}}=-2\left[\frac{\cos (x)+\cos ^{2}(x)+\sin ^{2}(x)}{(1+\cos (x))^{2}}\right]$
As we know, $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$.
$\therefore \frac{d^{2} y}{d x^{2}}=\frac{-2(1+\cos (x))}{(1+\cos (x))^{2}} \text { or } \frac{d^{2} y}{d x^{2}}=\frac{-2}{(1+\cos (x))}$
Now we have to find the value of $\frac{d^{2} y}{d x^{2}}+\frac{2}{e^{\frac{y}{2}}}$.
Let us find the value of $e^{\frac{\nu}{2}}$.
$e^{\frac{y}{2}}=e^{\left\{\frac{\ln (1+\cos (x))^{2}}{2}\right\}}$
$e^{\frac{y}{2}}=e^{\left\{\frac{2 \ln (1+\cos (x))}{2}\right\}}\left\{\because \ln (a)^{b}=b \ln (a)\right\}$
$e^{\frac{y}{2}}=e^{\ln (1+\cos (x))} $
$e^{\frac{y}{2}}=1+\cos (x)\left\{\because a^{\log _{a}(b)}=b\right\} $
$\therefore \frac{d^{2} y}{d x^{2}}+\frac{2}{e^{\frac{1}{2}}}=\frac{-2}{1+\cos (x)}+\frac{2}{1+\cos (x)}$
$\frac{d^{2} y}{d x^{2}}+\frac{2}{e^{\frac{y}{2}}}=0$