Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=f(x) satisfies the differential equation x y(1+y) d x=d y. If f(0)=1 and f(2)=(e2/k-e2) then k is equal to
Q. Let
y
=
f
(
x
)
satisfies the differential equation
x
y
(
1
+
y
)
d
x
=
d
y
. If
f
(
0
)
=
1
and
f
(
2
)
=
k
−
e
2
e
2
then
k
is equal to
660
97
Differential Equations
Report Error
A
1
18%
B
2
30%
C
3
30%
D
4
22%
Solution:
d
x
d
y
=
x
y
(
1
+
y
)
⇒
∫
y
(
1
+
y
)
d
y
=
∫
x
d
x
⇒
1
+
y
2
y
=
e
2
x
2
[
As
f
(
0
)
=
1
]
∴
f
(
2
)
=
2
−
e
2
e
2