Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=f(x) satisfies the differential equation ( sin x) d y+( cos x) y d x=ex d x with f(0)=0. Then the value of displaystyle lim x arrow 0 f(x) is
Q. Let
y
=
f
(
x
)
satisfies the differential equation
(
sin
x
)
d
y
+
(
cos
x
)
y
d
x
=
e
x
d
x
with
f
(
0
)
=
0
. Then the value of
x
→
0
lim
f
(
x
)
is
42
142
NTA Abhyas
NTA Abhyas 2022
Report Error
A
0
B
1
C
−
1
D
Does not exist
Solution:
(
sin
x
)
d
y
+
(
cos
x
)
y
d
x
=
e
x
d
x
d
[(
sin
x
)
⋅
y
]
=
e
x
d
x
Integrating
y
sin
x
=
e
x
+
c
Putting
f
(
0
)
=
0
0
=
1
+
c
⇒
c
=
−
1
y
=
s
i
n
x
e
x
−
1
x
→
0
lim
sin
x
e
x
−
1
=
x
→
0
lim
x
e
x
−
1
sin
x
x
=
1