Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=f(x) satisfies (d y/d x)=(x + y/x) and f(e)=e , then the value of f(1) is
Q. Let
y
=
f
(
x
)
satisfies
d
x
d
y
=
x
x
+
y
and
f
(
e
)
=
e
, then the value of
f
(
1
)
is
293
146
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
0
Solution:
d
x
d
y
=
1
+
x
y
i.e.
d
x
d
y
−
x
y
=
1
is a linear differential equation.
I.F.
=
e
−
∫
x
1
d
x
=
x
1
Solution of the differential equation is
x
y
=
∫
x
1
d
x
⇒
y
=
x
l
n
x
+
c
x
=
f
(
x
)
So,
f
(
e
)
=
e
+
ce
⇒
e
+
ce
=
e
⇒
c
=
0
Hence,
f
(
1
)
=
0