Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=f(x) be the solution of the differential equation y(x+1) d x-x2 d y=0, y(1)=e. Then displaystyle lim x arrow 0+ f(x) is equal to
Q. Let
y
=
f
(
x
)
be the solution of the differential equation
y
(
x
+
1
)
d
x
−
x
2
d
y
=
0
,
y
(
1
)
=
e
. Then
x
→
0
+
lim
f
(
x
)
is equal to
2813
154
JEE Main
JEE Main 2023
Differential Equations
Report Error
A
e
2
1
B
e
1
C
0
D
e
2
Solution:
x
2
x
+
1
d
x
=
y
d
y
ln
x
−
x
1
=
ln
y
+
c
(
1
,
e
)
c
=
−
2
ln
x
−
x
1
=
ln
y
−
2
y
=
e
l
n
x
−
x
1
+
2
x
→
0
+
lim
e
l
n
x
−
1
−
x
1
+
2
=
e
−
∞
=
0