Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=f(x) be a particular solution of the differential equation d y+x y d x=x d x which satisfies y(0)=2, then undersetx arrow 0 textLim (f(x)-2/x2) equals
Q. Let
y
=
f
(
x
)
be a particular solution of the differential equation
d
y
+
x
y
d
x
=
x
d
x
which satisfies
y
(
0
)
=
2
, then
x
→
0
Lim
x
2
f
(
x
)
−
2
equals
661
110
Differential Equations
Report Error
A
1
B
2
1
C
-1
D
2
−
1
Solution:
d
x
d
y
+
x
y
=
x
⇒
y
⋅
e
2
x
2
=
∫
x
⋅
e
2
x
2
d
x
+
c
y
⋅
e
2
x
2
=
e
2
x
2
+
c
,
y
(
0
)
=
2
⇒
c
=
1
⇒
y
=
1
+
e
2
−
x
2
⇒
x
→
0
Lim
2
−
x
2
e
2
−
x
2
−
1
(
2
−
1
)
=
2
−
1