Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=f(.x.) and xy(.1+y.)dx=dy . If f(.0.)=1 and kf(.2.)=(.1+f(.2.).)e2, k∈ N, then k is equal to [Note: e denotes Napier's constant]
Q. Let
y
=
f
(
x
)
and
x
y
(
1
+
y
)
d
x
=
d
y
. If
f
(
0
)
=
1
and
k
f
(
2
)
=
(
1
+
f
(
2
)
)
e
2
,
k
∈
N
,
then
k
is equal to
[Note : e denotes Napier's constant]
117
163
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
2
Solution:
We have,
x
d
x
=
y
d
y
−
1
+
y
d
y
∴
On integration, we get
C
+
2
x
2
=
I
n
y
−
I
n
(
1
+
y
)
f
(
0
)
=
1
⇒
C
=
−
I
n
2
⇒
1
+
y
2
y
=
e
2
x
2
∴
2
f
(
x
)
=
(
1
+
(
f
(
x
)
)
e
2
x
2
Put
x
=
2
. we get
2
f
(
2
)
=
(
1
+
f
(
2
)
)
e
2
∴
k
=
2