Q.
Let y be an implicit function of x defined by x2x−2xxcoty−1=0. Then y'(1) equals
2432
212
Continuity and Differentiability
Report Error
Solution:
x2x−2xxcoty−1=0 ⇒2coty=xx−x−x ⇒2coty=u−u1 where u=xx
Differentiating both sides with respect to x, we get −2cosec2ydxdy=(1+u21)dxdu
where u=xx⇒logu=xlogx ⇒u1dxdu=1+logx ⇒dxdu=xx(1+logx) ∴ We get −2cosec2ydxdy=(1+x−2x).xx(1+logx) ⇒dxdy=−2(1+cot2y)(xx+x−x)(1+logx) ...(i)
Now when x=1,x2x−2xxcoty−1=0, gives 1−2coty−1=0 ⇒coty=0 ∴ From equation (i), at x = 1 and coty=0 , we get y′(1)=−2(1+0)(1+1)(1+0)=−1