Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=((3x-1/3x+1)) sin x+ log e(1+x), x>-1. Then, at x=0, (d y/d x) equals
Q. Let
y
=
(
3
x
+
1
3
x
−
1
)
sin
x
+
lo
g
e
(
1
+
x
)
,
x
>
−
1
. Then, at
x
=
0
,
d
x
d
y
equals
2265
224
WBJEE
WBJEE 2012
Continuity and Differentiability
Report Error
A
1
22%
B
0
36%
C
-1
25%
D
-2
16%
Solution:
Given,
y
=
(
3
x
+
1
3
x
−
1
)
sin
x
+
lo
g
e
(
1
+
x
)
,
x
>
−
1
Differentiating w.r.t.
x
, we get
d
x
d
y
=
d
x
d
[
(
3
x
+
1
3
x
−
1
)
sin
x
]
+
d
x
d
lo
g
e
(
1
+
x
)
=
(
3
x
+
1
3
x
−
1
)
d
x
d
sin
x
+
sin
x
d
x
d
(
3
x
+
1
3
x
−
1
)
+
1
+
x
1
d
x
d
(
1
+
x
)
=
(
3
x
+
1
3
x
−
1
)
cos
x
+
sin
x
(
3
x
+
1
)
2
(
3
x
+
1
)
d
x
d
(
3
x
−
1
)
−
(
3
x
−
1
)
d
x
d
(
3
x
+
1
)
+
1
+
x
1
=
(
3
x
+
1
3
x
−
1
)
cos
x
+
sin
x
(
3
x
+
1
)
(
3
x
lo
g
e
3
)
(
3
x
+
1
)
2
−
(
3
x
−
1
)
(
3
x
l
o
g
e
3
)
+
1
+
x
1
∴
(
d
x
d
y
)
at
x
=
0
=
0
+
0
+
1
+
0
1
=
1