Q.
Let x,y,z,w be four non-zero real numbers such that x,y,z (in order) are in arithmetic progression and y,z,w (in order) are in geometric progression If x+w=16 and y+z=8, then find the absolute value of (x2−y2+2z−w).
Given x,y,z,w are 4 numbers such that x,y,z are in A.P. and y,z,w are in G.P.
Let x=r2a−a;y=ra;z=a;w=ar
Now, x+w=16 and y+z=8 ⇒r2a−a+ar=16 and ra+a=8 ⇒a(r2−1+r)=16 and a(1+r)=8r ⇒8r(r2−1+r)=16(1+r)⇒2−r+r2=2+2r ∴r2=3r r=0 (reject) or 3 ∴a=6 ∴x=−2;y=2;z=6;w=18
Hence, x2−y2+2z−w=(−2)2−(2)2+2(6)−18=4−4+12−18=−6⇒∣−6∣=6