Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let x, y ,z be positive real numbers such that x+y+z=12 and x3 y4 z5 = (0.1) (600)3. Then x3 + y3 + z3 is equal to :
Q. Let
x
,
y
,
z
be positive real numbers such that
x
+
y
+
z
=
12
and
x
3
y
4
z
5
=
(
0.1
)
(
600
)
3
. Then
x
3
+
y
3
+
z
3
is equal to :
5116
205
JEE Main
JEE Main 2016
Sequences and Series
Report Error
A
270
9%
B
258
6%
C
342
16%
D
216
53%
Solution:
x
+
y
+
z
=
12
A
M
≥
GM
12
3
(
3
x
)
+
4
(
4
y
)
+
5
(
5
z
)
≥
12
(
3
x
)
3
(
4
y
)
2
(
5
z
)
5
3
3
4
4
5
5
x
3
y
4
z
5
≤
1
x
3
y
4
z
5
≤
3
3
,
4
4
,
5
5
x
3
y
4
z
5
≤
(
0.1
)
(
600
)
3
But, given
x
3
y
4
z
5
=
(
0.1
)
(
600
)
3
∴
equality occurs
∴
3
x
=
4
y
=
5
z
(
=
k
)
x
=
3
k
;
y
=
4
k
;
z
=
5
k
x
+
y
+
z
=
12
3
k
+
4
k
+
5
y
=
12
k
=
1
M
∴
x
=
3
;
y
=
4
;
z
=
5
∴
x
3
+
y
3
+
z
3
=
216