Q.
Let x,y∈R satisfying the equation cot−1x+cot−1y+cot−1(xy)=1211π, then the value of dxdy at x=1 is
424
132
Continuity and Differentiability
Report Error
Solution:
Given, cot−1x+cot−1y+cot−1(xy)=1211π .......(1)
Put x=1, we get cot−11+cot−1y+cot−1y=1211π⇒2cot−1y=(1211π−4π)=128π=32π. ∴cot−1y=3π⇒y=31
So, P(x=1,y=31).
Now, differentiating both sides of equation (1) with respect to x, we get 1+x2−1−1+y21⋅dxdy−1+x2y21⋅(x⋅dxdy+y)=0
Put x=1,y=31, we get 2−1−(1+311)dxdy−(1+311)(1⋅dxdy+31)=0 ⇒2−1−43(31)=2×43⋅(dxdy) ⇒−(4323+3)=23(dxdy) ⇒dxdy=3−2(4323+3)=3−1−231=−(31+231)