(A) →(P)
If a=1 and b=0, then sin−1x+cos−1y+2π=2π ⇒sin−1y=−cos−1y ⇒sin−1x=−sin−11−y2 ⇒−x=1−y2 ⇒x2+y2=1 (B)→(Q)
If a=1 and b=1, then sin−1x+cos−1y+cos−1xy=2π cos−1x−cos−1y=cos−1xy ⇒xy+1−y21−x2=xy ⇒(x2−1)(y2−1)=0 (C)→(P)
If a=1 and b=2, then sin−1x+cos−1y+cos−1(2xy)=2π cos−1x−cos−1y=cos−1(2xy) ⇒xy+1−x21−y2=2xy ⇒1−x21−y2=xy ⇒1−x2−y2+x2y2=x2y2 ⇒x2+y2=1
(D) →(S)
If a=2 and b=2, we get sin−2x+cos−1y+cos−1(2xy)=2π cos−12x−cos−1y=cos−1(2xy) 2xy+1+4x21−y2=2xy ⇒(4x2−1)(y2−1)=0