Q.
Let $(x, y)$ be such that $\sin ^{-1}(a x)+\cos ^{-1}(y)+\cos ^{-1}(b x y)=\frac{\pi}{2}$
Match the statements in Column I with statements in Column II:
Column I
Column II
A
If $\alpha=1$ and $b=0$, then $(x, y)$
P
lies on the circle $x^{2}+y^{2}=1$
B
If $\alpha=1$ and $b=1$, then $(x, y)$
Q
lies on $\left(x^{2}-1\right)\left(y^{2}-1\right)=0 .$
C
If $\alpha=1$ and $b=2$, then $(x, y)$
R
lies on $y=x$
D
If $\alpha=2$ and $b=2$, then $(x, y)$
S
lies on $\left(4 x^{2}-1\right)\left(y^{2}-1\right)= 0 $.
Column I | Column II | ||
---|---|---|---|
A | If $\alpha=1$ and $b=0$, then $(x, y)$ | P | lies on the circle $x^{2}+y^{2}=1$ |
B | If $\alpha=1$ and $b=1$, then $(x, y)$ | Q | lies on $\left(x^{2}-1\right)\left(y^{2}-1\right)=0 .$ |
C | If $\alpha=1$ and $b=2$, then $(x, y)$ | R | lies on $y=x$ |
D | If $\alpha=2$ and $b=2$, then $(x, y)$ | S | lies on $\left(4 x^{2}-1\right)\left(y^{2}-1\right)= 0 $. |
JEE AdvancedJEE Advanced 2007
Solution: