2yex/ydx+(y2−4xex/y2)dy=0 2ex/y2[ydx−2xdy]+y2dy=0 2ex/y2[yy2dx−x⋅(2y)dy]+y2dy=0
Divide by y3 2ex/y2[y4y2dx−x⋅(2y)dy]+y1dy=0 2ex/y2d(y2x)+y1dy=0
Integrating ∫2ex/y2d(y2x)+∫y1dy=0 2ex/y2+lny+c=0 (0,1) lies on it. 2e0+ℓn1+c=0 ⇒c=−2
Required curve : 2ex/y2+ℓ ny −2=0
For x(e) 2ex/e2+ℓ ne −2=0 ⇒x=−e2loge2