Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let X= x: x=n3+2 n+1, n ∈ N and Y= x: x=3 n2+7, n ∈ N then
Q. Let
X
=
{
x
:
x
=
n
3
+
2
n
+
1
,
n
∈
N
}
and
Y
=
{
x
:
x
=
3
n
2
+
7
,
n
∈
N
}
then
230
147
Sets
Report Error
A
X
∩
Y
is a subset of
{
x
:
x
=
3
n
+
5
,
n
∈
N
}
22%
B
X
∩
Y
⊆
{
x
:
x
=
n
2
+
n
+
1
,
n
∈
N
}
17%
C
34
∈
X
∩
Y
39%
D
none of these
22%
Solution:
If
n
3
+
2
n
+
1
=
3
n
2
+
7
⇒
n
3
−
3
n
2
+
2
n
−
6
=
0
⇒
(
n
−
3
)
(
n
2
+
2
)
=
0
⇒
n
=
3
as
n
∈
N
So,
x
=
3
×
3
2
+
7
=
34
∈
X
∩
Y
In (a) and (b)
x
=
34
, for any
n
∈
N
.