Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let x= sin 1°, then the value of the expression, (1/ cos 0° ⋅ cos 1°)+(1/ cos 1° ⋅ cos 2°)+ (1/ cos 2° ⋅ cos 3°)+ ldots+(1/ cos 44° ⋅ cos 45°) is equal to :
Q. Let
x
=
sin
1
∘
, then the value of the expression,
c
o
s
0
∘
⋅
c
o
s
1
∘
1
+
c
o
s
1
∘
⋅
c
o
s
2
∘
1
+
c
o
s
2
∘
⋅
c
o
s
3
∘
1
+
…
+
c
o
s
4
4
∘
⋅
c
o
s
4
5
∘
1
is equal to :
2223
201
Trigonometric Functions
Report Error
A
x
B
1/
x
C
2
/
x
D
x
/
2
Solution:
s
i
n
1
∘
1
[
c
o
s
2
∘
c
o
s
3
∘
s
i
n
(
1
∘
−
0
∘
)
+
c
o
s
1
∘
c
o
s
2
∘
s
i
n
(
2
∘
−
1
∘
)
+
c
o
s
2
∘
c
o
s
3
∘
s
i
n
(
1
∘
−
0
∘
)
+
c
o
s
1
∘
c
o
s
2
∘
s
i
n
(
2
∘
−
1
∘
)
+
c
o
s
2
∘
c
o
s
3
∘
s
i
n
(
3
∘
−
2
∘
)
+
…
..
+
c
o
s
4
4
∘
c
o
s
4
5
∘
s
i
n
(
4
5
∘
−
4
4
∘
)
]
=
s
i
n
1
∘
1
[
tan
1
∘
+
(
tan
2
∘
−
tan
1
∘
)
+
(
tan
3
∘
−
tan
2
∘
)
+
(
tan
4
∘
−
tan
3
∘
)
+
…
.
+
(
tan
4
5
∘
−
tan
4
4
∘
)
]
=
s
i
n
1
∘
1
=
x
1