Given, sinx4cos2x=1−x+[x]2+x−[x] ⇒sinx4cos2x=1−{x}2+{x} [∵x−[x]={x}] ⇒2sinx∣cosx∣=1−{x}2+{x}=y( let ) ∵y=1−{x}2+{x}>0
[because {x}∈[0,1), so 2+{x} and 1−{x} are positive ] ∴∣cosx∣=cosx,∀x∈[4π,3π]
So, 2sinxcosx=1−{x}2+{x} ∵ Maximum value of 2sinxcosx=sin2x is ' 1'.
and minimum value of 1−{x}2+{x} (at {x}=0 ) is '2 ' ∴ For the given equation number of solution k=0 ∴∀x∈[4π,3π],Ktan2x=0