Q. Let $[x]$ denote the largest integer $\le$ x. If the number of solutions of $\sin x \sqrt{4 \cos^2 x} = \frac{ 2 +x - [x]}{ 1 -x + [x]}$ is $k$, then for $x \in \left[ \frac{\pi}{4} , \frac{\pi}{3} \right]$, the value of $k^{\tan^2 x}$
AP EAMCETAP EAMCET 2019
Solution: