Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let x (d y/d x)-y=x2(x ex+ex-1) ∀ x ∈ R- 0 such that y(1)=e-1. If y(2)=k y(1)(y(1)+2), then the value of k is not less than
Q. Let
x
d
x
d
y
−
y
=
x
2
(
x
e
x
+
e
x
−
1
)
∀
x
∈
R
−
{
0
}
such that
y
(
1
)
=
e
−
1
. If
y
(
2
)
=
k
y
(
1
)
(
y
(
1
)
+
2
)
, then the value of
k
is not less than
324
103
Differential Equations
Report Error
A
3
B
4
C
5
D
6
Solution:
Θ
x
d
x
d
y
−
y
=
x
2
(
x
e
x
+
e
x
−
1
)
⇒
d
x
d
y
−
x
1
⋅
y
=
x
(
x
e
x
+
e
x
−
1
)
I.F.
=
e
∫
x
−
1
d
x
=
e
−
l
n
x
=
x
1
∴
Solution is
yy
⋅
x
1
=
∫
(
x
e
x
+
e
x
−
1
)
d
x
=
x
e
x
−
x
+
c
Θ
y
(
1
)
=
e
−
1
⇒
e
−
1
=
e
−
1
+
c
⇒
c
=
0
∴
y
=
x
2
(
e
x
−
1
)
∴
y
(
2
)
=
4
(
e
2
−
1
)
=
4
(
e
−
1
)
(
e
+
1
)
=
4
y
(
1
)
(
y
(
1
)
+
2
)
∴
k
=
4
.