Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let x and y be two natural numbers such that xy = 12(x + y) and x le y. Then the total number of pairs (x, y) is
Q. Let
x
and
y
be two natural numbers such that
x
y
=
12
(
x
+
y
)
and
x
≤
y
. Then the total number of pairs
(
x
,
y
)
is
3698
253
BITSAT
BITSAT 2012
Report Error
A
8
64%
B
6
29%
C
4
0%
D
16
7%
Solution:
x
y
−
12
x
−
12
y
=
0
⇒
(
x
−
12
)
(
y
−
12
)
=
144
.
Now
144
can be factorised into two factors
x
and
y
where
x
≤
y
and the factors are
(
1
,
144
)
,
(
2
,
72
)
,
(
3
,
48
)
,
(
4
,
36
)
,
(
6
,
24
)
,
(
8
,
18
)
,
(
9
,
16
)
,
(
12
,
12
)
.
Thus there are eight solutions.