Q.
Let X and Y be two arbitrary, 3×3, non-zero, skew-symmetric matrices and Z be an arbitrary 3×3, nonzero, symmetric matrix. Then which of the following matrices is (are) skew symmetric ?
XT=−XYT=−YZT=Z (A)(Y3Z4−Z4Y3)T=(Y3Z4)T−(Z4Y3)T =(Z4)T(Y3)T−(Y3)T(Z4)T =(ZT)4(YT)3−(YT)3(ZT)4 =Z4(−Y)3−(−Y)3(Z)4 =−Z4Y3+Y3Z4 =Y3Z4−Z4Y3
Hence it is symmetric matrix. (B)(X44+Y44)T=(XT)44+(YT)44 =X44+Y44
Hence it is symmetric matrix. (C)(X4Z3−Z3X4)T=(X4Z3)T−(Z3X4)T =(ZT)3(XT)4−(XT)4(ZT)3 =Z3X4−X4Z3 =−(X4Z3−Z3X4)
Hence it is skew symmetric matrix. (D)(X23+Y23)T=(XT)23+(YT)23 =−(X23+Y23)
Hence it is skew symmetric matrix.