Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let x =α+β, y =α ω+β ω2, z =α ω2+β ω, ω is an imaginary cube root of unity. Product of xyz is.
Q. Let
x
=
α
+
β
,
y
=
α
ω
+
β
ω
2
,
z
=
α
ω
2
+
β
ω
,
ω
is an imaginary cube root of unity. Product of
x
yz
is.
2101
180
BITSAT
BITSAT 2005
Report Error
A
α
2
+
β
2
50%
B
α
2
−
β
2
50%
C
α
3
+
β
3
0%
D
α
3
−
β
3
0%
Solution:
Given,
x
=
α
+
β
,
y
=
α
ω
+
β
ω
2
and
z
=
α
ω
2
+
β
ω
Also,
ω
3
=
1
Now,
x
yz
=
(
α
+
β
)
(
α
ω
+
β
ω
2
)
(
α
ω
2
+
β
ω
)
x
yz
=
[
α
2
ω
+
α
β
ω
2
+
α
β
ω
+
β
2
ω
2
]
[
α
ω
2
+
β
ω
]
x
yz
=
α
3
ω
3
+
α
2
β
ω
2
+
α
2
β
ω
4
+
α
β
2
ω
3
+
α
2
β
ω
3
+
α
β
2
ω
2
+
α
β
2
ω
4
+
β
3
ω
3
x
yz
=
α
3
+
α
2
β
ω
2
+
α
2
β
ω
+
α
β
2
+
α
2
β
+
α
β
2
ω
2
+
α
β
2
ω
+
β
3
[
∵
ω
4
=
ω
]
x
yz
=
α
3
+
β
3
+
α
2
β
(
1
+
ω
+
ω
2
)
+
α
β
2
(
1
+
ω
+
ω
2
)
x
yz
=
α
3
+
β
3
+
0
+
0
[
∵
1
+
ω
+
ω
2
=
0
]
x
yz
=
α
3
+
β
3