Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let x = 2 be a root of y = 4x2 - 14x + q = 0. Then y is equal to
Q. Let
x
=
2
be a root of
y
=
4
x
2
−
14
x
+
q
=
0
. Then
y
is equal to
1940
213
KEAM
KEAM 2017
Complex Numbers and Quadratic Equations
Report Error
A
(x - 2) (4x - 6)
0%
B
(x - 2) (4x + 6)
100%
C
(x - 2) (-4x - 6)
0%
D
(x - 2) (-4x + 6)
0%
E
(x - 2) (4x + 3)
0%
Solution:
We have
y
=
4
x
2
−
14
x
+
q
=
0
Since,
x
=
2
is the root
∴
4
(
2
)
2
−
14
(
2
)
+
q
=
0
⇒
16
−
28
+
q
=
0
⇒
q
=
12
∴
y
=
4
x
2
−
14
x
+
12
=
4
x
−
8
x
−
6
x
+
12
=
4
x
(
x
−
2
)
−
6
(
x
−
2
)
=
(
x
−
2
)
(
4
x
−
6
)