Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let x=2 be a local minima of the function f(x)=2 x4-18 x2+8 x+12, x ∈(-4,4). If M is local maximum value of the function f in (-4,4), then M =
Q. Let
x
=
2
be a local minima of the function
f
(
x
)
=
2
x
4
−
18
x
2
+
8
x
+
12
,
x
∈
(
−
4
,
4
)
. If
M
is local maximum value of the function
f
in
(
−
4
,
4
)
, then
M
=
1252
116
JEE Main
JEE Main 2023
Application of Derivatives
Report Error
A
18
6
−
2
33
0%
B
12
6
−
2
33
100%
C
12
6
−
2
31
0%
D
18
6
−
2
31
0%
Solution:
f
′
(
x
)
=
8
x
3
−
36
x
+
8
=
4
(
2
x
3
−
9
x
+
2
)
f
′
(
x
)
=
0
∴
x
=
2
6
−
2
Now
f
(
x
)
=
(
x
2
−
2
x
−
2
9
)
(
2
x
2
+
4
x
−
1
)
+
24
x
+
7.5
∴
f
(
2
6
−
2
)
=
M
=
12
6
−
2
33