Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let (x + 10)50 + (x- 10)50 = a0 + a1x + a2x2 + .... + a50 x50, for all x ∈ R ; then (a2/a0) is equal to
Q. Let
(
x
+
10
)
50
+
(
x
−
10
)
50
=
a
0
+
a
1
x
+
a
2
x
2
+
....
+
a
50
x
50
, for all
x
∈
R
; then
a
0
a
2
is equal to
2027
183
Binomial Theorem
Report Error
Answer:
12.25
Solution:
(
x
+
10
)
50
+
(
x
−
10
)
50
=
a
0
+
a
1
x
+
a
2
x
2
+
≡
+
a
50
x
50
∴
a
0
+
a
1
x
+
a
2
x
2
+
≡
+
a
50
x
50
=
2
(
50
C
0
x
50
+
50
C
2
x
48
.1
0
2
+
50
C
4
x
46
.1
0
4
+
...
)
∴
a
0
=
2.
50
C
50
1
0
50
a
2
=
2.
50
C
2
.1
0
48
∴
a
0
a
2
=
50
C
50
1
0
50
50
C
2
×
1
0
48
=
2
×
100
50
×
49
=
4
49
=
12.25