Q.
Let x1 and x2 be the real solutions to x2+ax+1=0 for some real number a. If x1+1 and x2+1 are solutions of the equation x2−a2x+a2=0, then the sum of squares of all possible values of a is
205
86
Complex Numbers and Quadratic Equations
Report Error
Solution:
x1+x2=−a x1x2=1
Also x1+x2+2=a2
(1) & (3) ⇒a2+a−2=0⇒(a+2)(a−1)=0⇒a=1 or a=−2
Also, (x1+1)(x2+1)=a2 x1x2+(x1+x2)+1=a2⇒1−a+1=a2⇒a2+a−2=0⇒(a+2)(a−1)=0 ⇒a=1 or a=−2
Also, for real roots D≥0⇒a2−4≥0⇒a∈(−∞,−2]∪[2,∞)
Hence, only value of a is -2 . ∴ Sum of squares of all possible values of a is 4.