Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let (x0, y0) be solution of the following equations (2 x ) ln 2 =(3 y ) ln 3 3 ln x &=2 ln y Then x0 is
Q. Let
(
x
0
,
y
0
)
be solution of the following equations
(
2
x
)
l
n
2
=
(
3
y
)
l
n
3
3
l
n
x
&
=
2
l
n
y
Then
x
0
is
2086
195
JEE Advanced
JEE Advanced 2011
Report Error
A
6
1
B
3
1
C
2
1
D
6
Solution:
(
2
x
)
l
n
2
=
(
3
y
)
l
n
3
...(i)
3
l
n
x
=
2
l
n
y
...(ii)
⇒
(
lo
g
x
)
(
lo
g
3
)
=
(
lo
g
y
)
lo
g
2
⇒
lo
g
y
=
l
o
g
2
(
l
o
g
x
)
(
l
o
g
3
)
...(iii)
In (i) taking
lo
g
both sides
(
lo
g
2
)
{
lo
g
2
+
lo
g
}
=
lo
g
3
{
lo
g
3
+
lo
g
y
}
(
lo
g
2
)
2
+
(
lo
g
2
)
(
lo
g
x
)
=
(
lo
g
3
)
2
+
l
o
g
2
(
l
o
g
3
)
2
(
l
o
g
x
)
from (iii)
⇒
(
lo
g
2
)
2
−
(
lo
g
3
)
2
=
l
o
g
2
(
l
o
g
3
)
2
−
(
l
o
g
2
)
2
(
lo
g
x
)
⇒
−
lo
g
2
=
lo
g
x
⇒
x
=
2
1
⇒
x
0
=
2
1