Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let vecu be a vector coplanar with the vectors veca = 2 hati + 3 hatj - hatk and vecb = hatj + hatk. If vecu is perpendicular to veca and vecu . vecb = 24, then | vecu|2 is equal to:
Q. Let
u
be a vector coplanar with the vectors
a
=
2
i
^
+
3
j
^
−
k
^
and
b
=
j
^
+
k
^
. If
u
is perpendicular to
a
and
u
.
b
=
24
,
then
∣
u
∣
2
is equal to:
1473
235
JEE Main
JEE Main 2018
Vector Algebra
Report Error
A
336
53%
B
315
18%
C
256
24%
D
84
6%
Solution:
Clearly,
u
=
λ
(
a
×
(
a
×
b
))
⇒
u
=
λ
(
(
a
⋅
b
)
a
−
∣
a
∣
2
b
)
⇒
u
=
λ
(
2
a
−
14
b
)
=
2
λ
{(
2
i
^
+
3
j
^
−
k
^
)
−
7
(
j
^
+
k
^
)}
⇒
u
=
2
λ
(
2
i
^
−
4
j
^
−
8
k
^
)
as,
u
⋅
b
=
24
⇒
4
λ
(
i
^
−
2
j
^
−
4
k
^
)
⋅
(
j
^
+
k
^
)
=
24
⇒
λ
=
−
1
So,
u
=
−
4
(
i
^
−
2
j
^
−
4
k
^
)
⇒
∣
u
∣
2
=
336