Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let vecα=4 hati+3 hatj+5 hatk and vecβ= hati+2 hatj-4 hatk. Let vecβ1 be parallel to vecα and vecβ2 be perpendicular to vecα. If vecβ= vecβ1+ vecβ2, then the value of 5 vecβ2 ⋅( hati+ hatj+ hatk) is
Q. Let
α
=
4
i
^
+
3
j
^
+
5
k
^
and
β
=
i
^
+
2
j
^
−
4
k
^
. Let
β
1
be parallel to
α
and
β
2
be perpendicular to
α
. If
β
=
β
1
+
β
2
, then the value of
5
β
2
⋅
(
i
^
+
j
^
+
k
^
)
is
152
109
JEE Main
JEE Main 2023
Vector Algebra
Report Error
A
9
0%
B
11
0%
C
7
100%
D
6
0%
Solution:
Let
β
1
=
λ
α
Now
β
2
=
β
−
β
1
=
(
i
^
+
2
j
^
−
4
k
^
)
−
λ
(
4
i
^
+
3
j
^
+
5
k
^
)
=
(
1
−
4
λ
)
i
^
+
(
2
−
3
λ
)
j
^
−
(
5
λ
+
4
)
k
^
β
2
⋅
α
=
0
⇒
4
(
1
−
4
λ
)
+
3
(
2
−
3
λ
)
−
5
(
5
λ
+
4
)
=
0
⇒
4
−
16
α
+
6
−
9
λ
−
25
λ
−
20
=
0
⇒
50
λ
=
−
10
⇒
λ
=
5
−
1
β
2
=
(
1
+
5
4
)
i
^
+
(
2
+
5
3
)
j
^
−
(
−
1
+
4
)
k
^
β
2
=
5
9
i
^
+
5
13
j
^
−
3
k
^
5
β
2
=
9
i
^
+
13
j
^
−
15
k
^
5
β
2
⋅
(
i
^
+
j
^
+
k
^
)
=
9
+
13
−
15
=
7