y=5−x9−x2=5+x+x−516 dxdy=1−(x−5)216
So critical point is x=1 in [0,2] y(0)=59,y(1)=2,y(2)=35
So α=2 and β=35 I=−1∫3max(5−x9−x2,x) I=−1∫9/55−x9−x2dx+9/5∫3xdx I=−1∫9/55+x+x−516dx+9/5∫3xdx
After solving I=14+2528+16ln(158)+2572 α1=18 and α2=16