Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let un=1+2+3+ ldots +n and vn=(u2/u2-1) ⋅ (u3/u3-1) ⋅ (u4/u4-1) ⋅s (un/un-1) where n ≥ 2. Then find displaystyle lim n arrow ∞ vn.
Q. Let
u
n
=
1
+
2
+
3
+
…
+
n
and
v
n
=
u
2
−
1
u
2
⋅
u
3
−
1
u
3
⋅
u
4
−
1
u
4
⋯
u
n
−
1
u
n
where
n
≥
2
. Then find
n
→
∞
lim
v
n
.
43
162
Limits and Derivatives
Report Error
Answer:
3
Solution:
u
n
=
1
+
2
+
3
+
…
+
n
=
2
n
(
n
+
1
)
⇒
u
n
−
1
=
2
n
2
+
n
−
2
=
2
(
n
+
2
)
(
n
−
1
)
⇒
u
n
−
1
u
n
=
(
n
−
1
n
)
(
n
+
2
n
+
1
)
⇒
v
n
=
(
1
2
⋅
2
3
⋅
3
4
⋅
4
5
…
n
−
1
n
)
(
4
3
⋅
5
4
⋅
6
5
…
n
+
2
n
+
1
)
=
(
1
n
)
(
n
+
2
3
)
⇒
n
→
∞
lim
v
n
=
3
n
→
∞
lim
n
+
2
n
=
3
n
→
∞
lim
1
+
n
2
1
=
3